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Abstract

Second order turbulence models of the Mellor and Yamada type have been widely

used to simulate the PBL. It is however known that these models have several deficien-

cies. For example, they all predict a critical Richardson number which is about four

times smaller than the Large Eddy Simulation (LES) data, they are unable to match

the surface data, and they predict a boundary layer height lower than expected.

In the present model, we show that these difficulties are all overcome by a single new

physical input: the use of the most complete expression for both the pressure-velocity

and the pressure-temperature correlations presently available. Each of the new terms

represents a physica; process that was not accounted for by previous models. The

new model is presented in three different levels according to Mellor and Yamada's

terminology, with new, ready-to-use expressions for the turbulent moments. We show

that the new model reproduces several experimental and LES data better than previous

models. As far as the PBL is concerned, we show that the model reproduces both the

Kansas data as analyzed by Businger et al. in the context of Monin-Obukhov similarity

theory for smaller Richardson numbers, as well as the LES and laboratory data up to

Richardson numbers of order unity. We also show that the model yields a higher PBL

height than tile previous models.



1. Introduction

Reynoldsstressturbulence modelingbeganin the early 40's (Chou 1940,1945)and

sincethen it hasbeendevelopedby both physicistsand engineers,e.g., Rotta (1951),

Lumley and Khajeh-Nouri (1974), Launder et al. (1975), Pope (1975), Zemanand

Lumley (1979), Speziale (1991), and Shih and Shabbir (1992). The parameterizations

of the turbulence closures have been formulated theoretically, verified experimentally

(including comparison with the ever more reliable LES data), and applied to various

engineering flows. In the geophysical applications, Mellor and Yamada (1974, 1982)

pioneered the use of turbulence closure models to study the Planetary Boundary Layer

(PBL). The Mellor-Yamada (MY) model and its numerous variants have been more

successful in the simulation of the PBL than many of the empirical models and have

been widely used to describe the atmospheric PBL and the oceanic mixed layer. The

MY models are, however, not without deficiencies. Comparison of MY model results

with measured data and LES data show consistent discrepancies, and close examina-

tion indicates that the weakness of the model comes from three sources: (1) a crude

parameterization for the pressure-velocity and the pressure-temperature correlations.

(2) the use of a single "master" length scale (all the length scales corresponding to

different processes are assumed to be proportional to a master scale), and (3) a down-

gradient approximation for the third order turbulent moments. These three aspects

can be handled as three independent components in the model development and each

of them deserves a separate discussion. Along with many other efforts, the present

authors tried to address items (2) and (3) elsewhere (Cheng and Canuto 1994; Canuto

et al. 1994, 2000). The present paper concentrates on item (1), i.e., how to improve

the parameterization for the pressure correlations, thus generalizing the MY models

and improving the comparison with both measured and LES data.

Let's look at the deficiency (1) of the MY models and its variants (e.g., Hassid and

Galperin 1983) more closely. Firstly, these models predict too low a critical Richard-

son number (around 0.2), beyond which the turbulence ceases to exist, while both

measurements and LES data (e.g., Webster 1964; Wang et al. 1996) indicate that
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the critical value is around unity. Second,when applied to the surfaceof the neutral

boundary layer, none of these models is capable of differentiating between the vertical

and lateral components of the turbulent kinetic energy, w 2 and v 2, in fact, they yield

identical expressions for the two, while experiments consistently show that the vertical

component is much smaller than the lateral one (Table 1 of Mellor and Yamada, 1982;

Nieuwstadt 1984, 1985).

As we will show below, these deficiencies are associated with the oversimplifica-

tion of the parameterizations of the pressure-velocity correlation Ilij and pressure-

temperature correlation IIi° which will be corrected by adopting a more complete ex-

pression. Both IIi.j and l-I,.° have been shown to contain a slow (return-to-isotropy) part

and a rapid part (Launder et al. 1975; Lumley 1978) . The rapid parts of both Hi, and

fI,e contain velocity terms related to the mean strain-rate tensor coij, and the vorticity

tensor R,j, as well as buoyancy terms related to the heat fluxes. In addition, the rapid

part of IIf also contains a term related to the temperature variance _. By contrast,

MY models of glij include only the slow part and some of the rapid part (the term

proportional to eocia, where e is the turbulent kinetic energy); for II e, only the slow part

is included. Since each of these missing terms represents a specific physical process, it

seems appropriate and necessary to incorporate them in the model formulation, as we

do in the present paper.

In Section 1, we introduce the general problem. In Sections 2 and 3, we describe

the basic equations and the new turbulence closure. In Section 4, we derive the general

model equations for the 3D case. In Section 5, we give the detailed and ready-to-use

equations for the PBL. The new model is presented in three different "levels" according

to MY's terminology. Model constants are determined in Section 6. In Section 7, we

compare the new model and the MY model with measured and LES data, where we

can see that the new model matches the measured and LES data better than previous

models. Conclusions are presented in Section 8.



, 2. Basic equations

To model a PBL, weneedboth meanand turbulent variables.They are:

a. First moments

1) Mean velocity, Ui:

DUi O 10P

= -ox--r, jj - gi pOxi 2eijkajUk (la)--N-

2) Mean potential temperature, ®:

DO 0
= ---h¢ (lb)

Dt Oxj

D 0 0

= Ot "Ol-UJOxj Tij =- uiuj, t_i -_ uiODt

where

(lc)

Here ui is the ith component of the turbulent velocity fluctuation, gi = (0,0, g) is the

gravitational acceleration, P is the mean pressure, p is the mean density, f_j is the

rotation of the Earth, rij are the Reynolds stresses and hi is the heat flux.

b. S_cond m.oments

1) Reynolds stresses, rij:

O OUj 0_

r,j + D 0 = -(rik _ + r3k 7xk)

+/3ih a + flahi -- Hij -- eij (2a)

where

Op 2 0II 0 - u, + uj O--xxi -_50-_xkpuk (2b)

Oui Ouj 2

eij= 2u-_z k _ = 55ije, /3i - agl (2c)

Dij = Oxk ulujuk + tSij-_ff"£ (2d)

Here, a is the volume expansion coefficient, IIij is the pressure-velocity correlation

tensor, u is the molecular viscosity and e is the dissipation rate of the turbulent kinetic

energy e, and Dis is the diffusion term.

Of special interest is the equation for the turbulent kinetic energy e:

1 2 q2 (2e)
e = -_q , = uiui



2) Heal flux, hi:

where

De 1 OUi
+ -Dii = -ro-a-- + fl_hi-e (2f)D--7 2 azj

D___h aU_
Dt ' + = -hj 

ae o (3a)
.m _ _ij b__xj + 5_- rl_

m

Oxi' Oxj

where FI_ is the pressure-temperature correlation, and D/h is the diffusion of the heat

_UX h,'.

3) Temperature variance, 02:

80

Dg_ + De = -_ 2 h i _ 2co (4a)
Oxi

where

f = a
eo =- X_-_zj) , Do = -_z ui02 (4b)

where _ is the molecular conductivity and Do is the diffusion of tt_e temperature

variance.

In the present study, terms containing the molecular viscosity u and molecular

conductivity _, have been neglected, except for e,j and e0. In addition, in the second

moment equations, rotation has also been neglected. The modeling of the third-order

moments exceeds the scope of the present paper, but the interested readers may refer

to recent work on the subject (Canuto et al. 1994, 2000). As already stated, in this

paper we concentrate on the closure parameterization of the correlations II 0 and H_,

which will be shown to improve the PBL model results.

3. Turbulence closure

a. Pressure correlations

The pressure correlation terms I1 o and II_ in Eqs.(2b) and (3b) contain three dis-

lind contribulions due to (1) turbulence self-interactions (the return-to-isotropy or

slow part), (2) mean shear-turbulence interactions (a rapid part), and (3) buoyancy-

turbulence interactions (also a rapid part). The most complete models for 1-Iij and H °



are given by (Launder et al. 1975; Zeman and Lumley 1979):

= n!3) 0 n_(i)+ nf_) + nf(_)n, = (5a)

where

l-I(!) _-- 2T_lbijt3

nl_.) = - 4-es,_ - _12_j - o.2z_j
5

I-I_ (1) __ Tpolhi

II_(3) = _i#_0-_

where b0 is the traceless Reynolds stress tensor defined as follows

2e6..

blj = uiuj - 3 ,3

The olher tensors are defined as follows:

S,j = -_ \ Oxj + Oz, ]

(5b)

(5c)

(Sd)

1 (ou, oL_) (5_)R,j = -_ \ Ox_ Ox_

2 6
Eij = bikSkj --FSikbkj -- -_ ijbkmS,-nk, Zij = flikbk.i - bikRkj

3

where S,j and Rij are shear and vorticity respectively.

turbulence models for the PBL, these pressure correlations terms were parameterized

much less completely. For example, the MY model and its variants (Mellor 1973, Mellor

(s f)

In most past second-order

and Yamada 1974, 1982 and Hassid and Galperin 1983) only consider:

= 4 n!3 ) = 0FI(!) = 2r;lbo, IIl_ ) - eSo, "',,
--tJ

nf¢_)= ,;_h,, nf _)= nfTM= 0 (6)

In other words, only the slow terms and one single rapid term (the first term in the

expression of II !?)-u ) are retained; most of the rapid terms are neglected, and no buoyancy
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effects on the pressure correlation are included. In Section 6, we will show how these

missing terms lead to some of the model deficiencies, e.g., failure to match the data in

the neutral surface layer as well as in the stably stratified flows.

4. Algebraic Reynolds stress and heat flux models (AM)

a. Prognostic equations

The mean wind Ui and mean potential temperature ® are solved prognostically

using Eqs.(la-c).

b. .4 hierarchy of turbulence models

We present our new AM model as a hierarchy of different levels (levels 3, 2.5 and 2).

In the level 3 model, the turbulent kinetic energy e and the temperature variance 0 2 are

solved from their prognostic equations (see Appendix), while the other second moments

are solved from algebraic equations. In the level 2.5 model, the prognostic model

equation for 0 2 is reduced to an algebraic relation. In the level 2 model, the prognostic

equations for both e and 02 are replaced by corresponding algebraic equations.

The turbulent kinetic energy dissipation rate e and temperature variance dissipation

rate (o could be solved from their prognostic equations, or they could be parameterized.

Here we express them in terms of the corresponding dissipation time scales, r and to:

2e 0 2
e = --, e0 = -- (7)

T TO

In Section 6 we will discuss a parameterization of r and 7-o.

In the main text of this paper we will concentrate on the level 2.5 and 2 models.

c. Algebraic equations for the second moments

Combining (2a) and (2f), we can obtain the equation for bij, Eq.(5d):

D 4

Dtbij + Dij = --_eSij -- 2ij -- Zij + Bij -- Hij (8a)



where

Dij _ c3xk uiuj - u_ue_i: Uk (8b)

Assuming that the left side of (8a) can be neglected and employing (5b) for the

pressure-velocity correlation IIi3, one obtains the following algebraic equation for bij

where

bij = -AlerSij - A27_ij - )_3rZij 4- )_4rBij (%)

r ==15 '

1

t3 = - c 2)A,

1

A2 = 2(1 - _I)A

1
(9b)

These model constants will be given in Section 6. Similarly, in the prognostic equation

(3a) for the heat flux hi, if the left side is neglected and (5c) is employed for the

pressure-temperature correlation ri °, one obtains the algebraic equation for hi at. level

3:

+ Ao ZiF (lOa)

where

Aij = A56ij -t- A6TSij -4- _TvRij (10b)

r 3 5

)_0 = 1 - 71, As = --rp0' _6 = 1 - _-a3, Ar = 1 - _a3 (10c)

At levels 2.5 and 2, we further simplify the problem by neglecting the left side in

the prognostic equation for 02, Eq.(4a), to obtain the algebraic equation

0.7 = -rohi --00 ( 11 )
Oxi

Substituting (11) into (10a), we obtain the algebraic equation for hi at levels 2.5-2:

, ( oo
Aijh j = -r kbij + 3 'JJ _ (12a)

where

and where

(12b)
2 O0

A}j = AstSij -t- A6rSij + ATrRij + Asr _i-_x _

As = (1 - 21) 7"° (12c)
T
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5. PBL Model

a. Mean wind and potential temperature equations

In the PBL, several approximations can be made to the equations for the mean

wind and temperature. In Eq.(la), the horizontal pressure gradient can be expressed

in terms of the mean geostrophic wind components Ug and V9 as follows:

p -_z' = fc( ,,, -Ug) (13a)

and the rotation term can be approximated as

--2eijk_jUk "-- fceij3Vj (13b)

where x, y and z are the eastward, northward and vertical directions respectively,

.f_ = 29tsinc) is the Coriolis parameter with f_ the angular velocity of the Earth and

Q the latitude. In Eq.(lb), the horizontal temperature gradient can be approximated

with the thermal wind relation,

The equations for the eastward and northward horizontal mean wind components U

and V and for the mean potential temperature ® in the PBL can then be written as:

OU 0_-_

0--( = fc(V- I_) Oz (13d)

OV Og-w

0-)- = -L(U- Ug) - O---T- (13e)

06) _ + f_ ' U Oz (13f)o-5-- v -w oo

b. Level 3 model

Since the level 2.5 and level 2 models catch the main features of the second-order

closure models and are easy to use, they have become the most popular second-order

closure models in the PBL community. We will concentrate on them in the sections

below. Yet, the level 3 model has its own strength in that it produces counter gradient



heat fluxes,a phenomenonobservedin the upper part of the PBL. In the Appendix we

will presentthe detailsof the level 3 model for completenessand for future reference.

c. Level 2.5 model

In the level 2.5 model, the turbulent kinetic energy e is solved form its prognostic

equation:

Oe 0 1 OU OV

o-T - Oz 2 u2w + v2w + w3 - _z "ff-_- _z b-'_ + gawO - e (14)

The differential equation for the temperature variance 02 is given by (11) with the

index i replaced by 3. From the algebraic equations for uiuj and u,O, Eqs.(9a) and

(12a), we obtain:

12 ,[= 5q - 5 (t2 OU OV ]+ 313)_z g-_ - 2t2 Oz v---_+ 214ga_-,_ (151)

12 _[ _ out-_= 5q -- 5 (t2 ÷ 3t3) "v--w--212--_-zUW-t-214gctwO (15b)

u ,2 = 5q + _ (313 - 12) \ Oz + -_-z g-_ + 414gc_w-O
(15c)

t/1J = --(12 + t3) 5
(15d)

t/LL' --

?Jt/)

, ) ]r05" A_- +(12 18)_+ +
20z 512 q2 _ (12 13)_ -_7

TOV

-(12 - A3)_-_-z ut"--_+ A4rgc_uO (15e)

r OV (11 4

r OU

-(1:- A8)-_-_zUV + 14rgavO (15f)

-- [a® .__ 1 ____U_-_]t/o = -t_', LOz + _(1_ ÷ i_) . (15g)
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-- [_..___.0_1 OValvo= -.x;" T _ + _(,x6+ .xT)-b-/_,,o] (15h)

(15i)

Eqs.(15) can be solved using symbolic algebra. The results are:

(_, _) =_::.(ou ov_Oz' Oz: (16_)

O0

= - h'. -_z (16b)

KM = erSM, KH = erSH (16c)

1

S._I = --j[5(So + SiGH -'t-S2GM) (17a)

1

SH = ---j[5(s4-{-SSGH + s6Glvl) (17b)

where GH and GM are the dimensionless gradients for the mean potential temperature

and the mean velocity

a. _--(_x) :, GM- (,s): (lS_)

N 2 = ga-_z, ---- + (18b)

D = do + dlGH + d2GM + d3G_ + d4GHGM + dsG_M

do = 3A], di = As(7A4 + 3As)

3 2
_t:= _i(3x_- _i)- _(&- _g), d3= _(4X_+ 3X_)

1 _ 3. A2

1 A3) + _AIAsA8s, = -A_(A6 + A,) + 2A4A_(A, - gA_ -

i A 3 (16 AT)_ = _x_(aa_- x_/- _ ,_(3x_- _;)+ _, -

(18c)

(19)

and
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d. Realizability conditions for level 2.5 model

Realizability conditions are common to all second-order closure models. For the

present 2.5 level model, there are a few limitations on the values of SM and SH, (17a)

and (17b). Specifically, the two variables GM and GH must be limited to certain

domains outside of which the model may produce unphysical results since some un-

derlying assumptions (e.g., that departure from isotropy be small) may no longer be

valid.

Let us first consider the limitation on buoyancy. GH may be negative (unstable),

zero (neutral) or positive (stable). Assuming that production equals dissipation for the

turbulence kinetic energy e [see Eq. (22) below], and taking the limit GM --* 0 and

noticing that GM is always non-negative, we have

SH(O, GIt)GH + 2 > 0 (20a)

Substit_lting Eq.(17b) into Eq.(20a) yields the relation

-(s4 + 2dl)+ [(s4 + 2dl) 2 -8d0(s5 + 2d3)] 1/2
C,'H> (2oh)

2(s5 + 2&)

For the model constants used here (see Section 6), this minimum value of GH is

-10.S: the negative value indicates that it occurs in the unstable region.

.Next. we examine the limitation on the shear number. GM should always be non-

negative. Following Hassid and Galperin (1983), who argue that an increase of shear

should not result, in a decrease of normalized momentum flux, we apply the following

condition,

d (_-_2 +3"_w2)1/2 ]
- >0

dGM

Using Eqs.(16-18), Eq.(21a) can be reduced to a cubic inequality in GM,

(21a)

s2dsG3M + [(3s,d5 - s_d4)GH + 3sod5 - s2d2]a2M + [(s,d4 - 3s2d3)G_H

+(sld2 + sod4- 3_d_)aH - 3s_d0 + sod2]GM - (So + slGH)(d3G_ + d_GH + do) < 0

(21b)
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Although Eq.(21b) can be solved exactly, one may use the following approximate ex-

pression based on the fact that the terms containing s2 and ds are relatively small,

do -4- dl G H -4- daa2H
G M < (21c)

d2 + d4GH

e. Levd 2 model

If we assume that production and dissipation equal each other, the differential

equation for e, Eq.(14), reduces to

SM(GM, GH)GM -- SH(GM, GH)GH -- 2 = 0 (22)

which can be re-written as an equation for GM (or for GH) that depends on only one

parameter, the gradient Richardson number,

GH N 2
Ri - - (23a)

GM oc2

The resulting equation is:

(c, Ri 2 + c2Ri + ca)G_ + (c4Ri + cs)GM + co, = 0 (23b)

where

cl = s5 + 2d3, c2 = -sl + s6 + 2d4, Ca = -s2 + 2ds

c4 = s4+2d1, c5 =-s0+2d2, c6=2d0 (23c)

Eq.(23b) is a simple algebraic expression for the variable GM. Substituting the GM

solved from (23b) into (17a-b) we can plot the stability functions SM and SH as finction

of Ri (Figs. 1 and 2).

The critical Richardson number Ric, beyond which stable stratification effectively

suppresses the turbulence, can be found by considering the limit e --+ 0, i.e., GM ---+oc.

In this limit, Eq.(23b) is satisfied only if the coefficient of the quadratic term vanishes,

which yields

Ric = -c2 + (c22 - 4c, c3)} (24a)
2Cl
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Using the model constants determined in Section 6, we obtain

Ric = 0.96 (24b)

Although most previous second order closure models give Ric .v 0.2, there is a

variety of data that are in favor of a Ric of order one. Early laboratory data by Taylor

(as cited in Monin and Yaglom, 1971 ) showed that turbulent exchange exists even when

Ri > 1. In 1964, Webster's laboratory measurements showed that mixing persists up

to Ri _ 1. In the oceanic PBL, Martin (1985) showed that Ri .-_ 1 is needed to obtain

the correct mixed layer depth at Papa and November stations. More recently, DNS

(direct numerical simulation, Gerz et al., 1989) and LES (Wang et al. 1996, Kosovic

and Curry 2000) show that turbulence exists up to Ri -._ 1. Historically, the criterion

1

Ri > _ (24c)

was established by Miles (1961) and Howard (1961) on the basis of linear stability

analysis. However, when nonlinear interactions were included, Abarbanel et al. (1984)

showed that the sufficient and r,ecessary condition for stability is not (24c) but that

Ri _> 1 (24d)

which is in agreement with our result (24b).

6. Determination of model constants

In order to determine the model constants defined in (9b), (10c) and (12c), we

will employ the related time scale ratio expressions formulated in a recent theoretical

turbulence model that was based in part on RNG (Renormalization Group) methods

and whose predictions were tested on different flows (Canuto and Dubovikov, 1996a,b;

1997):

)__ rp. _ 2 Aa =4)_=0.107, 15- r _5(1+a_0 _)
r 5' 15 rpO

_s = (1 -. "7_ = (1 - 7,)at0, 71 = (25a)
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where at0 is the turbulent Prandtl number in neutral flows and will be determined later

on. To determine A_. )_3 and t4, we adopt the following expressions (Shih and Shabbir,

1992; Canuto, 1994):

Oq = 6C_5,

2

a2 = 3(2 - 7a5),

F = 0.64,

Substituting (25a) and (25b) in (9b) yields

1 4

(1 + 5 F /2)Or5 "-" ]- _

1
(25b)

A2 = 0.0032, Aa = 0.0864, A4 = 0.1 (25c)

We parameterize e (the dissipation rate of ¢) as

which corresponds to

q3
= (26a)

Big

r = --- (26b)
q

where the dissipation length scale g ,-_ _z as z ,,_ 0 and the constant B1 is defined as

]_1 = q3/u3 where u. is the friction velocity, and the value of B1 must be determined.

We show that /31 is related to the values of A1,_2 and _3 by assuming a logarithmic

wind profile near the neutral surface layer (taking the mean wind direction as the r

direction). The result is:

1 1 A 2 _ - 3/4
B, =(_A_-_+ 3 _ = 19.3 (27)

To determine the values of ),6, _7 and ch0, we need some auxiliary relations. First,

from (15g,i) an expression for the ratio of the vertical and longitudinal heat fluxes can

be derived,

[ 1 ]-1--- L (_,6 + ,X7) (28a)wO__= ) saT /2 a, +uO

where _rt = SM/SH is the turbulent Prandtl number. Webster (1964)'s experimental

data show that this ratio approaches unity as Ri .., O,

[ 1 1-'AsB1-2/3 ato + _(A6 + At) = 1 (28b)

15



= B4 I3 at Ri = O. Second, similar to thewhere we have used the fact that GM

derivation of (26b), in a near-neutral surface layer, from (15g,i) we obtain

A_ _ 31/74/3(1 + A2 - 3Aa)_t0As - 1B4/a(A6 - AT)(2at0 -4- A6 -I- AT) = 0 (28c)

Using (10c) and (28b-c), we obtain, in the near neutral surface layer,

4 4 [ 1B2/3t ]a3=g+gcrt0 1- 3 ' ,l+A2-aA3) (28d)

and A_ and AT can be obtained using (28d) in (10c). We still need to determine a value

for crt0 in a consistent manner. From the third expression of (25a) and(28b-d), at0 is

found to be related to BI, A2 and A3 as follows:

75 - 3B]/3 + 31/2 [1875 + 150B_/3 + (403 + 400\2 - 1200A3)Z_/3] 1/2
= 0.82

ato = 2B_/3 [3+ 4B_/3(1 + A2- 3A:.)]

So it follows that:

(28c)

As = 11.04, A6 = 0.786, A7 = 0.643, As = 0.547 (28f)

To sumnlarize, the model constants are determined to be:

(B1, A1, A2, ,_3, A4) = (19.3, 0.107, 0.032, 0.0864, 0.1 )

(t5, A6, AT, As) = (11.04,0.786,0.643,0.547) (29)

7. Comparison with Mellor-Yamada model and experimental data

a. Me!lor-Yamada model." a special case

The MY model (Mellor and Yamada, 1982) corresponds to:

Thus,

[(A'] ]),1 = 4 6 \-_1) + B_413 '

1 3A_
A2 = Aa = A4 = =A =

Z

B1 ro B_

As - 3A2' A6 = AT = 1, As -- r -- B1 (30a)

6.41

A -- BI ' °_1 _'= Ct2 = (13 "- ")'1 "- 0 (30b)

16



wherethe constants A1, B1, A2 and B2 are determined by Mellor and Yamada to be:

(A1, B1 ,A2, B_) = (0.92, 16.6, 0.74, 10.1) (30c)

which correspond to a set of value for the model constants in the present model

(B1, 3`1,3`2, 3,3, 3`4) = (16.6, 0.168, 0.166, 0.166, 0.166)

(3`5, _6,,_7,)_s) = (7.48,1,1,0.608) (30d)

Substituting (30d) into (19), (23c) and (24a) yields

Ric = 0.193 (MYmodel) (30e)

One of the deficiencies of the MY model, as Mellor and Yamada pointed out them-

selves, is that in a neutral surface layer, the model cannot distingui_,h v 2 and w 2, the

lateral and vertical components of the velocity variance, while experimental data con-

sistently show that w 2 is always significantly smaller than v _. The present model solves

this problem by incorporating more complete pressure correlations into the model clo-

sure so that the new model has more freedom to allow t, 2 and w 2 to be different. To

see this more closely, in a neutral surface layer, we reduce (15a-c) of the present model

[o:

u e 1 3`2 -1- 33`3

q2 -- 3 + 3 (31a)

v 2 1 2._2

q-7 = 3 3 (31b)

W 2 1 _2 -- 3_3

q2 -- 3 + 3 (31C)
m m

In the MY model )'2 = 3`3, which makes v 2 = w _, while in the present model A2 and Az

are two independent parameters, and we choose to determine them according to Shih

and Shabbir (1992)'s expressions that are derived from theoretical considerations and

have been shown to be consistent with measured data.

b. Comparison u, ilh measured and LES data

The turbulent Prandtl number, at = KM/KH, is one of the important parameters

of turbulence. We compare the inverse of at as a function of the gradient Richardson

17



number Ri resulting from both the present model and the MY model with the experi-

mental data of Webster (1964). It is clear that turbulence in the stably stratified flow

exists well beyond the MY critical value Ri ,,_ 0.2. According to the experimental data,

the critical value of Ri should be of order unity, and the present model falls within the

range of the measured data (Fig.3).

We also cornpare the vertical and lateral heat flux ratio -wO/uO (as a function of Ri)

resulting from both the present model and the MY model with the experimental data

of Webster (1964). Webster described the ratio as "(being) seen to fall catastrophically

from unity in neutral conditions to only about 0.5 at Ri equal to 0.2 and even less for

higher Richardson numbers." The present model gives the critical Richardson number

Ric = 0.96, in agreement with the data (Fig.4).

We then compare the present model with the recent LES of Kosovic and Curry

(2000) on a stably stratified PBL, at hour 12 of the high-resolution case NLt{RB,

when a quasi-steady state is reached. In our simulation we use the level 2 model

since we are particularly interested in the behax, ior of the model when the gradient

Richardson number Ri varies; for the length scale formula we use

_o = 0.1 f_ zqdz _1 -- KZ_o

fo qdz ' _o + _z

ae <0

gl : 0-7 -

_' = min(_l,O.53_) : Oeaz> 0
(32)

One can see from figures 5-7 that the present model is more consistent with the LES

result than the MY model, as we will discuss below.

It is very informative to examine the nondimensional shear and potential temper-

ature gradients defined as

_z _zu. O0
¢Pm = --S, Oh = (33)

4. Iw-0,I Oz

where u. and wOs are the friction velocity and the surface potential temperature flux

respectively and S is the shear given by Eq.(18b). In Figs. 5 and 6 we plot 1/q_,_ and

1/_ as function of Ri. The graphs indicate that the present model can reproduce

the observed Kansas data as analyzed by Businger et al. 1971) in the context of

18



Monin-Obukhov similarity theory for Ri < 0.2. For Ri > 0.2, the present model shows

that turbulence still exists although is weaker, in agreement with Kosovic and Curry

(2000)'s LES data. This result is also in agreement with Brown et al. (1994) and

Andren (1995). In the same figures we also plot the results of the MY model, which

deviate from the Kansas data for Ri < 0.2, and fail to reproduce the turbulence beyond

Ri = 0.2 found in the LES.

The PBL height is one of the most important quantities in any PBL modeling. The

PBL height is usually defined as the height at which the turbulent kinetic energy or the

magnitude of the momentum flux decreases to a small fraction of the corresponding

surface value ; or it may be defined as the height at which the (positive) temperature

gradient reacheas a certain value from below. In any case, the top of the PBL lies in

a region where the turbulence is stably stratified and, given the mean profiles of the

wind and the temperature (and thus given Ri), a higher intensity level of turbulence

yields a greater PBL height. The MY model, however, underestimates the PBL height

(Yamada and Mellor 1975). Since the present model predicts larger critical Richardson

number and produces more turbulence for a given Richardson number, greater PBL

heights can be achieved (Fig.7).

8. Conclusions

With a single new input, the most updated expressions for the pressure-velocity and

pressure-tenlperature correlations, we have derived a second-order closure turbulence

model to describe the PBL. One of the main features of the new model is that it yields a

critical Richardson number of order unity, rather than --, 0.2 as given by most previous

models. The larger critical Richardson number is in agreement with measured and LES

data and the stability analysis that includes non-linear interactions. The new model

reproduces the Kansas data as analyzed by Businger et al. (1971) for Richardson

numbers smaller than 0.2 as well as the LES and laboratory data for Richardson

numbers up to unity. Another improvement is that the present model allows a match of

the surface data, which was not possible in previous second order closure PBL models.

In addition, the new model produces greater PBL height than the previous models.
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Figure Captions

Fig.1. The stability function SM versus the gradient Richardson number Ri. The

solid line represents the present model; the dotted line, the MY model.

Fig.2. The stability function SH versus the gradient Richardson number Ri. The

solid line represents the present model; the dotted line, the MY model.

Fig.3. The inverse turbulent Prandtl number a, -_ (normalized by its value for

neutral stratification) versus the gradient Richardson number. The solid line is the

result of the present mode] at level 2. The dotted line represents the level 2 MY

model. The experimental data by Webster (1964) are redrawn here as filled circles.

The present model yields a much larger critical Richardson number (_ 1) than the

Meltor-Yamada model (_ 0.2).

Fig.4. Ratio of the rates of heat transport in the w-direction (vertical) and the

u-direction (horizontal, along the mean flow), -wO/-_, versus the Richardson number.

The solid line represents the result of the present model, while the dotted line represents

the MY model. The experimental data (Webster, 1964) are redrawn here as filled

circles.

Fig.5. Nondimensional shear as a function of the gradient Richardson number. The

crosses represent the LES simulation of Kosovic and Curry (2000), case NLHRB (their

Eq. 27). The solid line represents simulation results using the present model, while

the dotted line, simulation results using the MY model. The dashed line represents

the measured Kansas data (Businger et al. 1971).

Fig.6. Similar to Fig.5 but for the nondimensional potential temperature gradient

(Eq. 28 of Kosovic and Curry, 2000).

Fig.7. PBL height as a function of the dimensionless time tfc, where fc is the

Coriolis parameter. Cross: LES result; solid line: present model result; dotted line:

2O



MY model result.

Appendix

The Level 3 PBL model

In the level 3 PBL model, the turbulent temperaturevariance02 is solved from its

prognostic equation (instead of from an algebraic equation):

D _- 00___ i)O--_ 0 2-_0 + zW02 = -2 _-zWC, - 2--7-o (AI")

From (10a), the algebraic equation for the heat flux wO is:

wO = --.X-[aT _ + _(.k6-- .Xr) \ Oz + Oz } + .k;'XogarN (A2)

All the other algebraic equations for the Reynolds stress and the heat flux are the same

as the level 2.5 model, (15a-h), except (15i), which is replaced by (A2) in the level 3

model. We solve (15a-h) and (A2) using symbolic algebra and the results are:

(-fi-_,W_) = --erSM \ Oz' , wO = --erSH-_z + % (A3)

where

3[As + ),4GH + As(Ag - ' _
% = D 5,k2)GM] AogarN (.44)

is the counter-gradient term which is absent in the level 2.5 model and D is the same

as in (18c). The structure of the stability function SM differs from the SM in the level

2.5 model (17a) by an extra term,

1 [ _] (A5)S M _ --_ $ 0 _- .sIGH + s2GM + S3Ao(gar)2 e

where

1

sa = 2)%[2_s(_2 + 3)_3)+ 3(_6+ _r)] (A6)

The form of the stability function SH remains the same as that of the level 2.5 model

(17b). The expressions for the model constants are the same as in (19) except that

in level 3 model 18 = 0. In addition, the constant to needed in (A4) is set to 2/3

according to (10c) and (25a).
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